A Fully Integrated Approach for CCS Cluster Projects Balance of Operations – Digital Solutions for CCS

ABB Balance of Operations

The major challenge facing CCS industrial hub projects is the transition from design to operations

ABB Balance of Operations is a full chain model of the entire CCS network, from emitter to disposal reservoir, to support operators and operations

Maximize uptime by always operating where the system can react to change Assure safety by avoiding corrosion, temperature, and integrity limits Save money by reducing compression, heating, and other operating costs

ABB are the experts in process/safety operations

Pace CCS are the experts in CCS design

Example of a CCS Cluster

Investment is phased as the cluster grows:

- Gathering pipeline network
- Export pipelines
- Power
- Compression
- Blue hydrogen & new industry
- Storage reservoirs
- Wells & injection capacity

Re-use of infrastructure:

- Midstream and oil & gas pipelines
- Re-purposed platforms
- Re-purposed wells

OFFSHORE CO2 STREAM SUB-SEABED CASING & STORAGE Carbon Capture & Storage (CCS)

CCS – A new challenge

- CO₂ emissions contain impurities
- Impurities can react to create corrosive compounds
- We need to protect the overall CCS infrastructure
 - Pipelines
 - Compressors
 - Valves / Wellheads
 - Aquifer / reservoir
- CO² states vary from Gaseous to Supercritical
- Minimize Costs Maximize storage capacity safely
- It is most cost effective to use existing infrastructure where possible

Figure: carbon steel corrosion in CO₂, caused by typical CCS impurities reacting to form strong acids

- 100 bar / 1500 psi & ambient temperature
- 99+ % CO₂
- Impurities are $NO_x \& H_2O$ at <100 ppm (0.01%)

ABB Balance of Operations

CCS Chain

- Analyze each emitters composition
- Calculate the blended emission composition
- Predict corrosion factors
- Model the reservoir / aquifer
- Minimize energy consumption for compression and heating when required
- Learn how parameters change over time (machine learning)
- Factor all the above into a holistic Digital Tool set
- Assure availability as emitters go online/offline
- Reduce operating costs and energy consumption
- Maximize storage capacity
- Perform "what if" scenario modelling
- Enable autonomous operations

Digital Twin

PACECCS

ABB

OPTIMAX[®] CCS MVP Industrial Decarbonization

- Improve Availability and Efficiency
- Full Lifecycle, Planning & Operations
 - Planning: Detailed simulation
 - Operation: Predictive- and Realtime optimization for injection and compression
- Remote, autonomous operation
- Model consists of
 - Carbon Emitters
 - Compressors
 - Heating and Cooling
 - Wells (e.g. reservoir injection)

ABB Balance of Operations Typical Overview

Мар		Status	F	orecast	Trai	nsmitters
Balogun Reservoir	(#6)	Inlet	Outlet	Outlet	Bottomhole	×
From/To		Port Compressor	Heater	Choke	Reservoir	
Vapour Fraction	-	1.0	1.0	1.0	1.0	
Temperature	°C	17.0	30.0	29.0	29.0	
Pressure	bara	25.0	25.0	32.0	32.0	
Mass Flowrate	MTPA	3.0	3.0	2.3	2.3	
Volumetric Flowrate	m3/h	6279.9	6747.9	3817.1	3817.1	
Properties						
Molar Enthalpy	kJ/kmol	7568.4	8159.8	7751.3	7751.3	
Molecular Weight		43.9	43.9	43.9	43.9	
Mass Density	kg/m3	54.5	50.8	68.9	68.9	
Viscosity	Pa.s	1.57E-05	1.62E-05	1.65E-05	1.65E-05	
Molar Volume	m3/kmol	0.805	0.865	1.466	1.120	
Compressibility	-	0.838	0.861	0.908	0.891	
Composition (mole fractio	n)					
Water		0.000050	0.000050	0.000050	0.000050	
Methanol		0.000000	0.000000	0.000000	0.000000	
Carbon Dioxide		0.997750	0.994523	0.995701	0.995701	
Hydrogen		0.002200	0.001023	0.000733	0.000733	
Benzene		0.000000	0.000000	0.000002	0.000002	
Carbon Monovide		0.000000	0.000000	0.000000	0.000000	
Argon		0.000000	0.000005	0.000287	0.000287	
Nitrogen		0.000000	0.004361	0.003127	0.003127	
Oxvgen		0.000000	0.000005	0.000004	0.000004	
Hydrogen Sulphine		0.000000	0.000000	0.000000	0.000000	
Sulphur Dioxide		0.000000	0.000016	0.000020	0.000020	
Nitric Oxide		0.000000	0.000014	0.000019	0.000019	
Nitrogen Dioxide		0.000000	0.000002	0.000001	0.000001	
Ethanol		0.000000	0.000000	0.000000	0.000000	
Ammonia		0.000000	0.000000	0.000000	0.000000	
Hydrogen Chloride		0.000000	0.000000	0.000018	0.000018	
Chlorine		0.000000	0.000000	0.000008	0.000008	

ABB Balance of Operations Asset Status

Мар		Status	Forecast	Transmitters						S	Status
Cement Emitter (#	4)		×								
Vapour Fraction	-	1.0									
Temperature	°C	55.0									
Pressure	bara	35.0				D	4	1			
Mass Flowrate	MTPA	1.7			Ba	logun	Company		Blue Hydrogen		
Volumetric Flowrate	m3/h	2909.5				\sim	Centent				
Properties					7	5					
Molar Enthalpy	kJ/kmol	8848.0									
Molecular Weight		44.0			Clements		Manifold				
Mass Density	kg/m3	66.7									
Viscosity	Pa.s	1.76E-05					3	CCGT			
Molar Volume	m3/kmol	0.660									
Compressibility	-	0.850									
Composition (mole fracti	on)	0.000050									
Water		0.000050									
Carbon Dioxido		0.000000									
Hydrogen		0.00000									
Benzene		0.000008									
Methane		0.000000								<u>.</u>	
Carbon Monoxide		0.001000	Name	Blue Hydrogen	CCGT		Cement	Port	Balogun Tophole	Clements Tophole	
Argon		0.000100	Туре	Emitter	Emitter	Manifold	Emitter	Compressor	Reservoir	Reservoir	
Nitrogen		0.000000	Number	1	2	3	4	5	6	7	
Oxygen		0.000000	Vapour Fraction [-]	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Hydrogen Sulphine		0.000000	Temperature [°C]	55.0	55.0	29.0	55.0	40.0	18.6	20.4	
Sulphur Dioxide		0.000030	Pressure [bara]	35.0	35.0	32.0	35.0	35.0	15.0	15.0	
Nitric Oxide		0.000030	Mass Flowrate [MTPA]	2.0	2.3	4.3	1.7	6.0	3.0	3.0	
Nitrogen Dioxide		0.000000	Volumetric Flowrate [m3/h]	3431.0	3954.8	7127.3	2909.5	9485.6	421.5	421.5	
Ethanol		0.000000	CO2 content (mol fraction)	0.997750	0.991720	0.994523	0.998687	0.995701	0.995701	0.995701	
Ammonia		0.000000									
nydrogen Chloride		0.000065		SHOW	SHOW	SHOW	SHOW	SHOW	SHOW	SHOW	
Chlorine		0.000030									

ABB Balance of Operations Forecast Predictions

Мар	5	Status		Forecas	t 🖪	Transmitte	rs F				
Port Compressor (#5 From/To Vapour Fraction Temperature Pressure Mass Flowrate Volumetric Flowrate	°C bara MTPA m3/h	Outlet Cooler 1.0 50.1 35.0 6.0 9485.6	Outlet Balogun 1.0 50.1 35.0 3.0 4742.8	Outle Clemen 1.0 50.1 35.0 3.0 4742.	t × ts 8	Clem	6 4 1 Balogun Cement Blue Hydrogen 7 5 Port Manifold 2				
Scenarios Weather Change			ALARM	TRIP	OP. LIMIT	SHOW					
Blue Hydrogen emitte	r goes offl	line	NO	NO	NO	SHOW					
CCGT emitter goes offline		NO	NO	NO	SHOW	Event Log					
Cement emitter goes	offline		NO	NO	NO	SHOW	11:24 OPERATIONAL LIMIT "Weather change" (0 minutes ago)				
Emitter comes online SHOW						SHOW	11:24 TRIP "Weather change" (0 minutes ago)				
Cement emitter kiln changeover		NO	NO	NO	SHOW	11:24 All scenario checks complete (0 minutes ago)					
Well changeover: Balogun		NO	NO	NO	SHOW	11:00 T ALARM scenario predicted in last hour (24 minutes ago) 11:00 No TRIP scenarios predicted in last hour (24 minutes ago)					
Well changeover. Clements		NO	NO	NO	SHOW	11:00 No OPERATIONAL LIMIT scenarios predicted in last hour (24 minutes ago) 10:14 End ALARM "Cement emitter kiln changeover" (70 minutes ago)					
Heating failure: Balogun		NO	NO	NO	SHOW	10:00 1 ALARM scenario predicted in last hour (84 minutes ago) 10:00 No TRIP scenarios predicted in last hour (84 minutes ago)					
Heating failure: Clements		NO	NO	NO	SHOW	10:00 No OPERATIONAL LIMIT scenarios predicted in last hour (84 minutes ago)					

ABB Balance of Operations PV Comparisons

ABB

Business Risks & Opportunities

Operation Issue	Operational Effect	Consequences	Would BoPs mitigate those consequences
Emitter plant trips	Lower flow rates of CO2 change and altered blended composition	Revised set points required, compression, pressure, temperature	Yes
Pipeline integrity breach or compressor trip	Unable to collect and transport CO2	Liquidated damages applied from emitters	Yes
Sub-surface geological formation unavailable	CCS network shutdown	Liquidated damages applied from emitters	Yes
Corrosion	Integrity of infrastructure	Shutdown and high expense to repair. LDs from emitters	Yes
Energy usage, compression and heating	Excess OPEX costs	Profitability	Yes
Sub-surface geological formation	Reduced capacity and life expectancy	Failure to meet design life/performace criteria	Yes
New emitters coming on-line	Increased flow rates of CO2 change and altered blended composition	Modification to compression, heating and instrument sizing	Yes
Not having a holistic operational view of the complete CCS chain	Inefficient operations, higher OPEX costs, risks to availability	Various shutdown scenario's	Yes

James Bridgland – Solutions Sales Manager UK & Ireland Hydrogen and CCS. James.Bridgland@gb.abb.com OEUK PPT 12/10/2023